Wellposedness of Linear Control Systems

Miriam Bombieri

May 16, 2013

We consider linear control systems with unbounded control and output operators and investigate well-posedness with a semigroup approach.

On the Banach spaces X, U, Y, called state, control and output space, we consider the following linear operators.

- $A : D(A) \subset X \to X$, generator of a C_0-semigroup, the state operator,
- $B \in \mathcal{L}(U, X_{-1})$ the control operator,
- $C \in \mathcal{L}(X_1, Y)$ the output operator,
- $D \in \mathcal{L}(U, Y)$ the feedthrough operator.

With these operators we introduce the following linear control system

$$
\Sigma(A, B, C, D) : \begin{cases}
\dot{x}(t) = Ax(t) + Bu(t), & t \geq 0, \\
y(t) = Cx(t) + Du(t), & t \geq 0.
\end{cases}
$$

We construct an operator matrix A on an appropriate product space \mathcal{X} and define the system $\Sigma(A, B, C, D)$ to be well-posed if A generates a strongly continuous semigroup on X.

The generator property of A can be characterized by means of certain properties “admissibility” of the operators B, C.

1 X_{-1} is the extrapolation space of X w.r.t. A.

2 X_1 denote $D(A)$ endowed with the graph norm induced by A.