An isoperimetric inequality for the first Steklov-Dirichlet Laplacian eigenvalue of convex sets with a spherical hole

Rosario SANNIPOLI
University of Naples “Federico II”, Italy

In this paper we prove the existence of a maximum for the first Steklov-Dirichlet Laplacian eigenvalue in the class of convex sets with a fixed spherical hole under volume constraint. More precisely, if \(\Omega = \Omega_0 \setminus B_{R_1} \), where \(B_{R_1} \) is the ball centered at the origin with radius \(R_1 > 0 \) and \(\Omega \subset \mathbb{R}^n \), \(n \geq 2 \), is an open bounded and convex set such that \(B_{R_1} \subset \Omega_0 \), then the first Steklov-Dirichlet Laplacian eigenvalue \(\sigma_1(\Omega) \) has a maximum when \(R_1 \) and the measure of \(\Omega \) are fixed. Moreover, if \(\Omega_0 \) is contained in a suitable ball, we prove that the spherical shell is the maximum.

This is a joint work with Nunzia Gavitone, Gloria Paoli and Gianpaolo Piscitelli.